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Abstract

In this work the connection between curvature, the emergence of the universe, and

the process of morphogenesis is investigated in detail. We have come a long way from

general relativity using differential geometry, which describes the curvature of space-

time as an emergent phenomena, to the more recent theory of loop quantum gravity

using non-geometric objects such as holonomy, fluxes, spin, and knotting. However,

these theories are still only a model for space-time curvature, i.e., they explain the

coarse-grained description of the structure of space-time and how this can account for

the scale-variant behaviour and its dynamics. In this work, I will use the term mor-

phogenesis to describe the emergence of structure in space-time fabric. The different

levels of scale of phenomena can be described by their fractal analogues.

Keywords: fractomorphodynamics, morphogenesis, fractal dimensions, fractal space-

time
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1 Introdcution

A unified description of gravity is a longstanding problem in physics. Since the early history

of physics it has been proposed that space-time was discrete, a question that was taken up

again in the 1980s when physicists started to take the nature of quantum gravity seriously.

So far, all attempts to find a theory of everything have been plagued by the problem of

singularities. While these theories are very successful at explaining physics on the largest

scales of astrophysics, they cannot describe the physics on the smallest scale of atoms and

elementary particles. One of the latest efforts to find a theory of everything uses a geometric

approach to finding the quantum mechanics of gravity based on a discrete version of general

relativity called loop quantum gravity. In these theories, gravity and quantum mechanics

are unified using non-geometric objects such as holonomy, fluxes, spin, and knotting (see,

e.g., [Rov08]. However, all of these theories describe the emergent nature of the geometry

of space, not space as a substance. To explain the full behavior of space, we need to pro-

vide an explanation of the internal behavior of space. Here I will offer a purely geometric

description of this emergent process known as morphogenesis that describes the process of

space-time developing its structure. This article explains the relationship between spacetime

curvature, topology change, and the fractal nature of space. The key concept of this article

is the geometric morphogenesis of space-time. This approach leads to a unified understand-

ing of general relativity, and the standard model of particle physics as facets of the same

phenomena. These new ideas replace the current idea of a space-time manifold of differ-

ential equations with a nonlinear space-time model that is not limited by the smooth and
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continuous approximation of general relativity, but can also be applied to quantum theories

of gravity. Unlike many other approaches to quantum gravity, which are still using differen-

tial geometry in their theory, this new geometric approach starts with the assumption of an

underlying fractal. With a fractal, you have different scales of smoothness, i.e., from coarse

to fine. Based on the different scales of smoothness, you get a set of differential equations

that will allow you to describe the degrees of curvature at varying scales. This descrip-

tion is carried out using a morphogenetic potential, which gives the geometric curvature of

spacetime.

2 Geometric Morphogensis
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Figure 1: Morphogenesis of Space-time

Morphogenesis: It’s defined as the formation of structure in spacetime as a function of

the geometric morphogenetic potential f , and the external forcing or boundary conditions

b. The geometric morphogenetic potential is an abstract vector field describing the struc-

ture formation that emerges. For example, if it is an attractor field, it has a stable space

of equilibria. If it is a pseudo force field, it has no stable point of equilibria, but instead

it has a fractal structure with fixed points and saddles. In the former case, the dynamics
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has an eigen spectrum with discrete eigenvalues. In the latter, the eigenvalues are dense on

the real axis, which is consistent with self-similar fractals. In order to define the geomet-

ric morphogenetic potential as an abstract vector field, we first identify the n-dimensional

morphogenetic potential space as

Λn =
(
R
Z

)
× · · · ×

(
R
Z

)
︸ ︷︷ ︸

n times

(1)

We then projectively identify each of the Λn’s along the temporal coordinate, so that

Λn becomes identified with Rn. The end result is that we have a single infinite dimensional

vector space whose basis is Bn,i where i indexes the dimension of the physical space, e.g.:

Bn,i = {pointOi
t(0); t ∈ R} ∪ (2)

{line lin,t; lin,t is a 1-cycle with period τn,i} ∪ (3)

{surface si
n,t; si

n,t is a 2-cycle with period σn,i} ∪ (4)

{volume vi
n,t; vi

n,t is a 3-cycle with period dn,i} (5)

. . . (6)

The key idea in morphogenesis is that the field acting on a domain gives you not just a

volume of that domain, but a certain type of shape of that volume. In addition, the field

also specifies how fast that shape is changing. The general form of morphogenetic fields we

consider is as follows:

ϕ⃗ = Σk,m,l

∫
Dk

t0,t1

λm
k,lρk,lfk,m,l dV (7)

where fk,m,l is the geometric morphogenetic potential, ρk,l is a measure density that we often

choose to be a Dirac delta function, and λm
k,l is a measure of the characteristic length-scale
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associated with the geometric morphogenetic potential fk,m,l. In order to get a non-linear

equation describing the structure of spacetime, we need to assume that the morphogenetic

fields are constrained by the incompressibility condition:

∫
Dk

t0,t1

ρk,l dV = 1 (8)

which means that for a given domain Dk
t0,t1 , at every instant in time, the volume associated

with that domain is a constant, i.e.,

Dk
t0,t1 =

⋃
l

Dk,l
t0,t1 (9)

Ḋk
t0,t1 =

⋃
l

Ḋk,l
t0,t1 (10)

Volume of domain =
∫

Dk
t0,t1

dV =
∑

l

∫
Dk,l

t0,t1

dV

=
∑

l

ck,l = constant (11)

The temporal scale associated with the domain Dk
t0,t1 is given by:

σk,t1,t2 =

√√√√ |D̈k
t0,t1 |

|Ḋk
t0,t1 |

(12)

3 Fractals as mathematical tools for Morphogenesis

fm
k,t0,t1 = σk,t1,t2XDk

t0,t1
ϕ⃗m

k,t0,t1 (13)

Where m ∈ Λn, k is a topological index which indexes the different spatial domains

that the geometric morphogenetic field is defined over, and ϕ⃗m
k,t0,t1 is a component of the

geometric morphogenetic potential. This model treats the morphogenetic potential as having
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two components, the temporal evolution of the potential, and its spatial distribution. We

can now extend this definition to n dimensions by taking the composition of n such geometric

morphogenetic fields. We take the spatial and temporal dimensions of the morphogenetic

field as one dimension of the metric and a different dimension of the time-space. If m ∈ Λn

is the index for space, and j ∈ Λn+1 for time-space, the j’th component of f at (xk
t , t) can

be expressed as follows:

fm
k,t(xk

t ) = σ(k,t)
(
fm

k,t(xk
t ), xk

t−, x
k
t+

)

To allow for inhomogeneities in the morphogenesis process, we also extend f to a function

that takes in a continuous parameter s from the parameter set S, which then acts as a

gradient field:

fm
k,t : (a, σ(k,t)) −→ fm

k,t(a, σ(k,t)) (14)

Examples:

3.1 Inhomogeneity in Geometry

This is equivalent to taking M as the boundary of spacetime. The external forcings are then

the initial and final states of the spacetime boundaries:

fm(s) = (xs(t)(a), σm
t (a))

With the following boundary conditions

xt(0) != pσ, xt′(1) != pσ,where t′ ≤ t
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This can be extended to the case of a collection of geometric morphogenetic fields with a

total of #directions + 1 as follows:

f
m0···mn−1
t0 = (xi

t0(a), σm
k,i,t)

with the following boundary conditions

xi
t(0) != pi

σ,0, x
i
t′(1) != pi

σ,n,where t′ ≤ t

3.2 Self-Organized Criticality in Geometry

This is equivalent to taking M as the state space of a discrete dynamical system whose

phase-space is a subset of Euclidean space with non-zero measure E and a boundary of

spacetime. The external forcings are then a single point state in the boundary of spacetime:

fm(s) = (xs(t)(a),pi,t(a), a, a single point xt = (xx1 , . . . , xxd
, 1 − (1 − α)a),where α = E

Ω

The boundary conditions are then trivial:

fm(0) = (xs(0)(a),pi,0(a), a,pi,t(a)), where t = 1

3.3 Lottery Model

In the lottery model, the temporal evolution of the morphogenetic field is trivial:

fm
k,t = xm

t

The evolution of the geometric morphogenetic fields is then given by the initial conditions

of the temporal evolution field:

fm
k,t = fm(xk

t−1)
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3.4 Advected Sandpile

In the advected sandpile, the geometric morphogenetic fields are coupled with a dissipation

field and given as:

∂tσi,t,k + (∇⃗ · f)i,t,k + (∇⃗ · h)i,t,k = 0

Where f is the geometric morphogenetic potential, and h is a dissipation potential. This

means that we can re-scale f and h by a constant factor Ω to model the fact that they are

both proportional to the rate of change of the fractal geometry of the evolving sandpile:

∂tσi,t,k + (∇⃗ · f)i,t,k + (∇⃗ · h)i,t,k = 0.

4 Conclusions and Discussion

Morphogenesis is an emergent phenomena that can only be described by the mathematics

of nonlinear dynamics. This emergent phenomenon arises because of the discrete nature of

spacetime and the continuous nature of physics. So far, all quantum gravity and most theo-

retical approaches to modeling quantum gravity use a differential geometry, i.e., one where

spacetime is an infinitely differentiable manifold. In these theories, the natural boundary

conditions that should be used to find classical or semi-classical dynamics is that spacetime

is asymptotically flat or anti-de-Sitter. However, these theories leave out the notion that

the actual metric might take on some of these geometries, instead it is a constraint. This

approach ignores the fact that the set of all of the possible geometries of the universe is an

infinite set [Sin22d], so many of those geometries will give you a divergent (i.e., singular)
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metric. This divergence is due to the fact that the metric of spacetime is locally Minkowskian

in the smooth limit, but the overall structure of the spacetime geometry is locally fractal.

This implies that all known theories of gravity, from general relativity, to string theory, to

loop quantum gravity are local approximations of an underlying non-linear theory of grav-

ity. This theory of gravity describes the dynamics of spacetime as a fractal system with a

hierarchical set of symmetries, i.e., diffeomorphisms, i.e., coordinate transformations.

A Fractal Dimension in the Anatomy of the Brain

There have been attempts to apply fractal geometry to brain anatomy and function [Sin22c;

Sin22b; Sin22a]. The fractal dimension of a geometric object is an exponent of the object’s

box-counting fractal dimension, an approximation to its Hausdorff dimension. For example,

the fractal dimension of a spheroid in 3-D is approximated by the exponent of the number

of (nonoverlapping) spherical shells that fit inside its bounding box. So, an estimate of the

(approximate) fractal dimension of a brain can be found by calculating the fractal dimension

of the cortex as a whole using some appropriate mathematical framework for brain anatomy,

and then finding the power law relating this "apparent" fractal dimension and the number

of layers in the cortex. Fractal dimension then provides a dimensionless and continuous

(though approximate) measure of brain structure. The idea may prove fruitful since it has

recently been suggested that cortical dynamics might be fractal in nature [JBS21].
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